

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Advanced Computer Network

Subject Code:

22520

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No	Q.N.		Scheme
1.	(a) Ans.	Attempt any FIVE of the following: Differentiate between IPv4 and IPv6. (any two)	10 2M
	Ans.	Sr.IPv4IPv6No.	
		1IPv4 addresses are 32 bitsIPv6 addresses are 128 bits ii.e. 4 bytes length16 bytes length	points
		2 Header length is 20 bytes Header length is 40 bytes	1M each
		3 Checksum is available in No Checksum in header header	
		4 IPv4 allows 5 different IPv6 allows storing classes of IP address unlimited of IP address	an
		5 No packet flow Packet flow identification identification available	is
		6 Limited addresses Larger address space	
	(b) Ans.	State the four advantages of IPv6.	2M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Advanced Computer Network

Subject Code: 22520

	Advantages of IPv6:				
	• Larger address space.				
	• Better header format.				
	• New options for additional functionalities.				
	Allowance for extension.	four			
	• Support for more security.	advanta			
	More efficient routing	ges ½M			
	More efficient packet processing	each			
	Directed data flows				
	Simplified Network configuration				
	Support for new services				
	Support for Security				
	Auto configuration				
(c)	State the need of domain name system.	2M			
Ans.	Need of domain name system:				
	• Since IP addresses are difficult to remember and names are easier				
	to remember Domain Name System is used and DNS servers are				
	used for converting these names into IP addresses.				
	 Large number to hosts and servers connected in the internet can 				
	be classified using Domain name system so that hierarchical				
	naming system is implemented.				
	 To identify an entity, TCP/IP protocols use the IP address. An IP 				
	is uniquely identifies the connection of a host to internet. Use for				
	mapping can map a name to an address or an address to a name.				
(d)	State the use of 6 flags in TCP header.	2M			
Ans.	There are 6, 1-bit control bits that control connection establishment,	2 1 1			
AII5 .	termination, abortion, flow control etc				
	URG ACK PSH RST SYN FIN				
	1) URG: Urgent pointer	Correct			
	If this bit field is set the receiving TCP should interpret the urgent	use 2M			
	pointer field.	<i>use</i> 2111			
	2) ACK: Acknowledgement				
	If this bit field is set the ACK field described earlier is valid.				
	3) PSH: Push function				
	Request for push4) RST: Reset the connection				
	If this bit is present it signals the receiver that sender is aborting the	<u> </u>			

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Advanced Computer Network

Subject Code:

	 connection i.e. Reset the connection. 5) SYN: Synchronize When this bit field in present then the sender is attempting to 'synchronize' sequence numbers 6) FIN: No more data from sender. If this bit is set then it terminates the connection. 				
	OR				
	URG: Urgent pointer is valid ACK: Acknowledgment is valid PSH: Request for push RST: Reset the connection SYN: Synchronize sequence numbers FIN: Terminate the connection				
	URG ACK PSH RST SYN FIN				
	6 bits				
(e)	List two advantages of using UDP over TCP.				
Ans.	 Advantages of using UDP over TCP: 1) UDP is connection less and unreliable transport layer protocol. i.e. It does not require to maintain a connection. 2) UDP is transaction oriented and suitable for simple query response protocols. 3) UDP is faster since it does not require acknowledgment. 4) Useful when time sensitivity is more important 	Any two advanta ges 1M each			
(f)	State the transmission modes of FTP.	2M			
Ans.	Transmission modes of FTP:1. Stream mode2. Block mode3. Compressed mode	Correct modes 2M			
(g) Ans.	State the concept of fragmentation in IPv4. Fragmentation: When the maximum size of datagram is greater than	2M			
	maximum size of data that can be held a frame then the network layer divides the datagram received from x-port layer into fragments. OR Fragmentation is the division of a IP datagram into smaller units. After fragmentation, each fragment will have its own header with few fields aban and four fields remaining some	Fragme ntation definitio n 1M			
	fields changed and few fields remaining same. OR				

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject Code: 22520

Subj	ject: Adv	anced Computer Net	work	Subject Code: 22	2520
		fields of the original	header are copied in	to smaller units. Most of the to the fragment header. The d Total length are altered.	Concept 1M
2.	(a)	Attempt any THRE Compare TCP and	EE of the following: UDP (any four poin	ts).	12 4M
	Ans.	Characteristics	ТСР	UDP	
		Connection	TCP is connection oriented Protocol	UDP is connection less Protocol	
		Reliability	It provides reliable delivery of messages	It provides unreliable delivery of messages	
		Error Handling	TCP makes checks for errors and reporting		
		Flow controlling	TCP has flow control	UDP has no flow control	Any four points
		Data transmission order	TCP gives guarantee that the order of the data at the receiving end is the same as the sending end	No guarantee of the data transmission order	IM each
		Header Size	20 bytes	8 bytes	
		Acknowledgment	TCP acknowledges the data reception	UDP has no acknowledgment Section	
		Use	Used where reliability is important	Used where time sensitivity is more important.	
		Data Interface to application	Stream-based: No particular structure for data	Message based data: Data sent in discrete packages by application	
		Overhead	Low	Very low	
		Speed	High	Very high	
		Application	FTP, Telnet, SMTP, DNS, HTTP, POP	DNS, BOOTP, DHCP, TFTP, RIP	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Advanced Computer Network

Subject Code:

22520

(c)	Explain working of W	VWW.	4 M	
	• • • •	plaining the concept shall be considered).		
	The Web is a repository of information in which the documents,			
Ans.	called web pages, are distributed all over the world and related			
	documents are linked to	e		
	The WWW today is a	a distributed client-server service, in which a	Explana	
	0	can access a service using a server.	tion 4M	
	The service provided is	s distributed over many locations called sites.		
	Each site holds one or	more web pages. Each web page can contain		
	some links to other we	b pages in the same or other sites.		
	Simple web page	ge has no links to other web pages.		
	 Composite well 	b page has one or more links to other web		
	pages.			
	Each web page is a file	with a name and address.		
	The web page is stored	l at the web server. Each time a request arrives,		
	the corresponding docu	ament is sent to the client.		
(d)	Describe the sub-net	work address if the destination address is	4M	
	200.45.34.56 and the s	subnet mask is 255.255.240.0		
Ans.				
	To find the subnet address we have to AND the IP address and the			
	subnet mask as shown below:			
	200.45.34.56			
		*		
	Destination address:	11001000 . 00101101 . 00100010.00111000	11	
			Identifyi na	
	255.255.240.0	AND	ng subnet	
			mask/	
	Subnet mask	11111111 . 1111111 . 1111 0000.00000000	netid	
			and host	
	ANDing		id 2M	
	200.45.32.0			
	Subnet address 11001000.00101101.00100000.00000000			
	Thus subject address is 200 45 22.0			
	Thus subnet address is 200.45.32.0			
		OR		
		ress, keep the network bits in the IP address as		
	it is, and make all host	bits as 0's.:		

Page 6 / 29

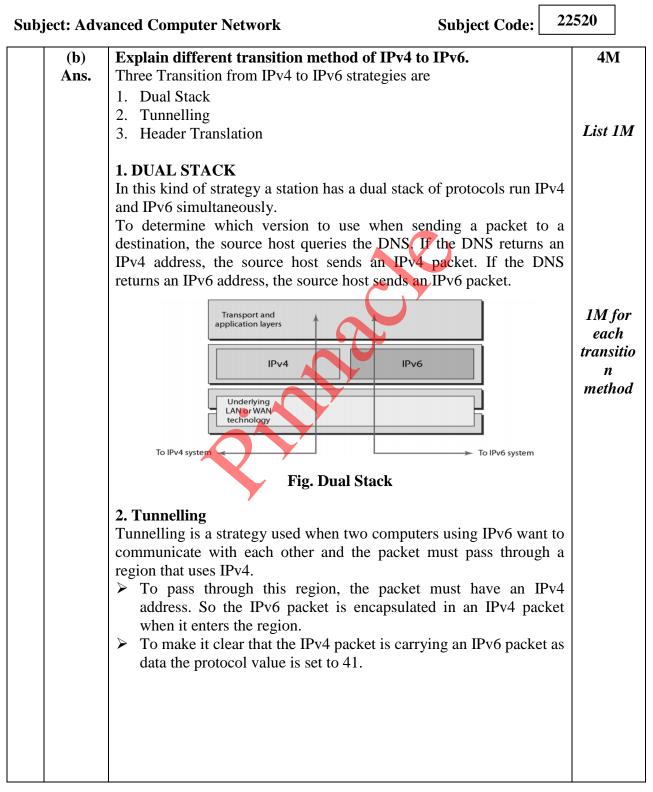
MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION,

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

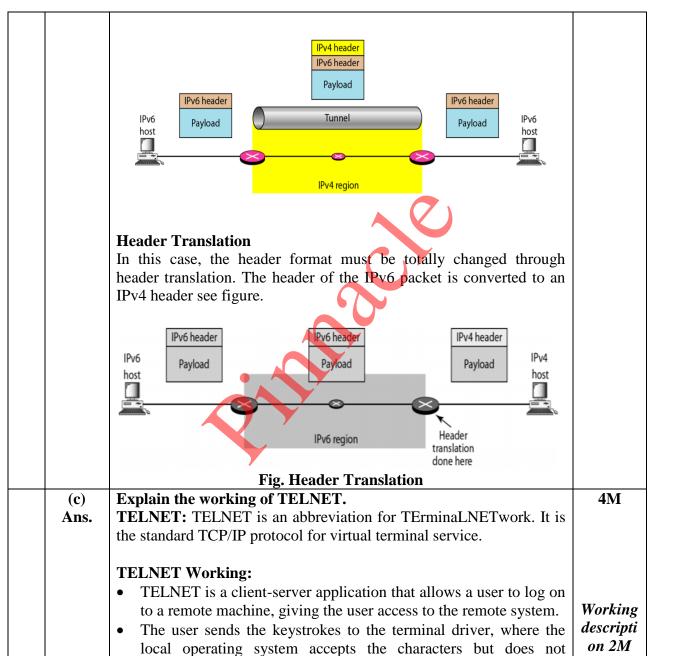
Subject: Advanced Computer Network


Subject Code:

		200.44	5.34.56			
				01101 . 00100010.00111000		
		With sare 12	With subnet mask as 255.255.240.0, network bits are 20 and host bits are 12 .			
				king host bits as 0, the subnet		
		-	s is obtained as given below.	8		
		Subne	t address 11001000 . 0010	1101 . 0010 0000.00000000		
		Thus s	subnet address is 200.45.32.0			
3.			pt any THREE of the followin	g	12	
	(a)		in difference between distance		4M	
		(Any f	four points).			
	Ans.					
		Sr. No.	Distance Vector Routing	Link State Routing		
		1	Routing tables are updated	Complete topology is		
			by exchanging information	distributed to every router to		
			with the neighbours.	update a routing table.		
		2	It update full routing table.	It updates only link states.	Any	
		3	It uses Bellman-Ford algorithm	It uses Dijkstra algorithm.	four points	
		4	Distance Vector routing	Link state routing works best	1M each	
			doesn't have any hierarchical	for hierarchical routing		
			structure.	design.		
		5	CPU and memory utilization	Higher utilization of CPU		
			is lower than Link state	and memory than distance		
			routing.	vector routing.		
		6	Bandwidth required is less due to local sharing, small	due to flooding and sending		
			packets and no flooding.	of large link state packets.		
		7	Example protocols are RIP	Example protocols are OSPF		
			and IGRP.	and IS-IS.		
		8	Slow convergence.	Fast convergence.		
		9	Summarization is automatic	Summarization is manual.		
		10	Easier to configure	Harder to configure		
		11	Count to infinity problem	No count to infinity problem		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

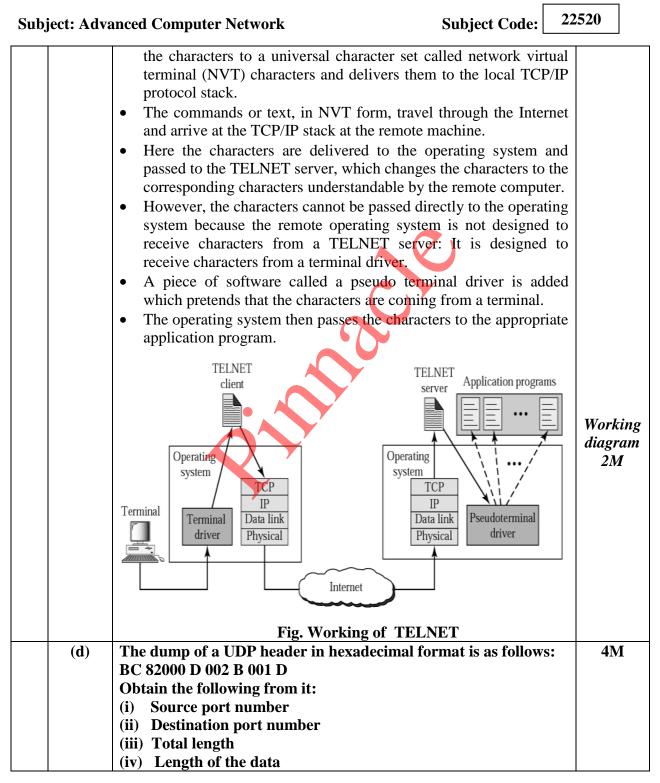
MAHARA


MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject Code: 22520



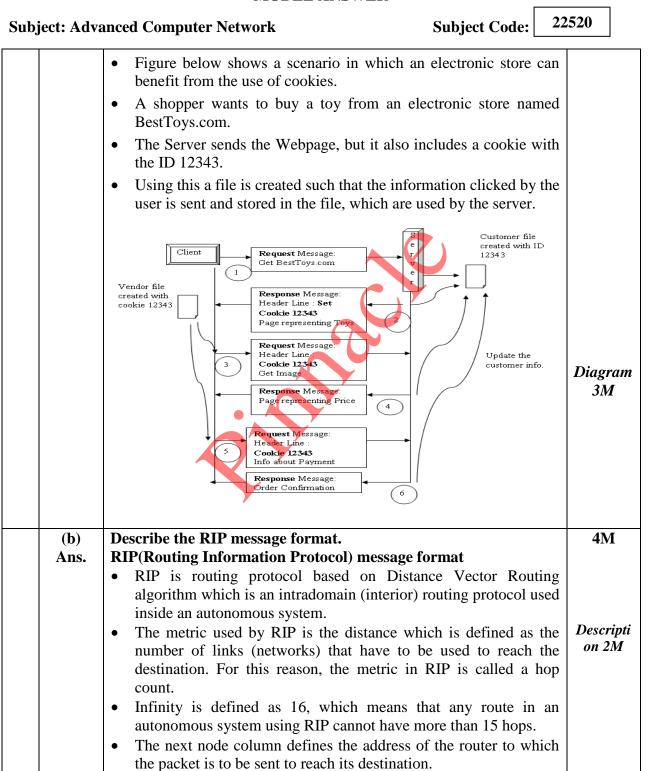
• The characters are sent to the TELNET client, which transforms

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER


Ans.	The UDP header has four parts, each of two bytes. That means we get the following interpretation of the header. i) Source port number = $BC82_{16} = 48258$ ii) Destination port number = $000D_{16} = 13$ iii) Total length = $002B_{16} = 43$ bytes iv) Since the header is 8 bytes the data length is $43 - 8 = 35$ bytes.	Each correct answer carries 1M		
4. (a)	Attempt any THREE of the following: Construct a diagram to show the application of cookies in a scenario in which the server uses cookies for advertisement.			
Ans.	(Note: Any other diagram shall be considered) Use of Cookies for advertisements: A cookie is also used by advertising agencies. An advertising agency can place banner ads on some main website that is often visited by users. The advertising agency supplies only a URL that gives the banner address instead of the banner itself. When a user visits the main website and clicks on the icon of an advertised corporation, a request is sent to the advertising agency. The advertising agency sends the banner, a GIF file, for example, but it also includes a cookie with the ill of the user. Any future use of the banners adds to the database that profiles the Web behaviour of the user. The advertising agency has compiled the interests of the user and can sell this information to other parties. This use of cookies has made them very controversial. Hopefully, some new regulations will be devised to preserve the privacy of users. The user's web browser requests a page from Web Site A. Web Site A returns a page containing objects (ads) located on Web Server X. The (third-party) Web Server X returns the requested object(s) and includes its own third-party cookie which the user's web browser retains. Web Server X subsequently uses this third-party cookie to 'tag' and uniquely identify this user's web browser each and every time it ever asks for anything again. Fig. Use of Cookies in advertisement OR	Use 1M		

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUPER OF TROUTER

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION,

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

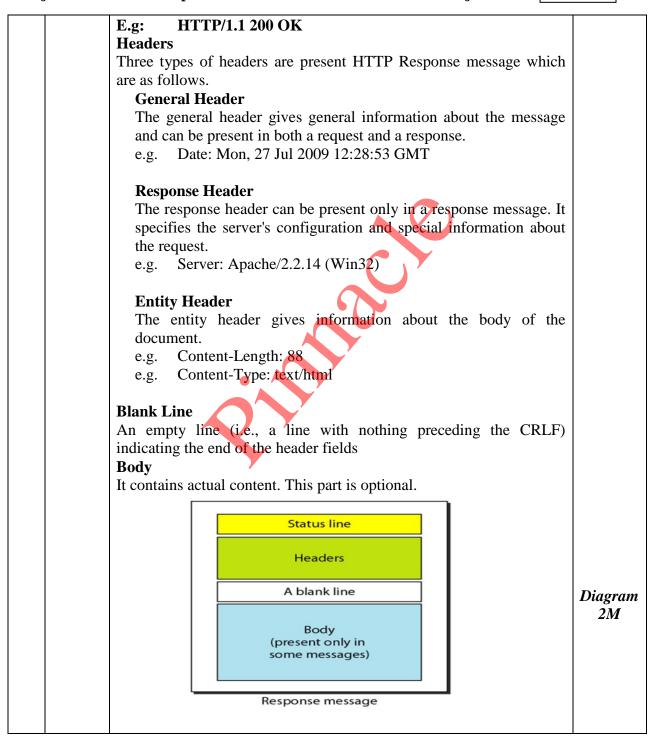
(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Advanced Computer Network

Subject Code:

		Command	Version	Reserved		
		Fan	nily	All 0s		
	ed		Network	address	Message format	
	Repeated		All	0s	diagram 2M	
	All 0s					
			Dist	ance		
	\vdash			essage format		
		mmand: 8-bit	0			
		Гhe type of mes r sion: 8-bit	sage: request ()	1) or response (2)		
		Define the RIP v	version			
	• All					
				by RFC 1058 RIP; it was added compatibility with pre-standard		
	v	varieties of RIP.		es from its defaulted value, zero.		
		mily: 16-bit field de	fines the fam	ily of the protocol used. For		
		ΓCP/IP, value is		ny of the protocol used. For		
		Address Netwo				
		•		of the destination network and e applicable to any protocol.		
	1	However, IP cur		y 4 bytes, the rest are all 0s		
		tance:	nes the hon cou	nt from the advertising router to		
		the destination n	-	int from the advertising fouter to		
(c)		be the HTTP ro			4M	
	(Note: Any other diagram showing the actual contents of the format shall be considered).					
Ans.	Ans.					
	Status Status		us for the respo	onse it indicates response status	Descript	
	using a	code as well as	a status phrase		ion 2M	
		-	s with a protoc	ol version, then status code and		
	status p	status phrase.				



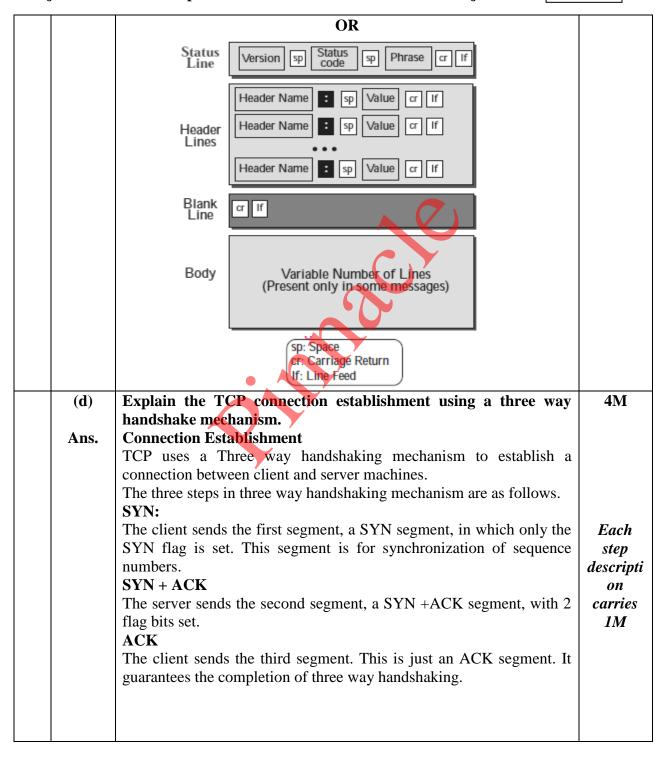
(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Advanced Computer Network

Subject Code:

NUMBER OF TROUTON


MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION,

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Advanced Computer Network

Subject Code: 22520

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Advanced Computer Network

Subject Code: 22520

	Client A: ACK flag S: SYN flag Active open A S SYN SYN Seq: 8000 ACK: 8001 ACK SYN ACK SYN ACK SYN ACK SYN ACK SYN ACK SYN ACK SYN ACK SYN ACK SYN SYN SYN ACK SYN ACK SYN ACK SYN ACK SYN ACK SYN SYN SYN SYN SYN SYN SYN SYN SYN SYN	Diagram 1M
(e)	Explain about standard and non standard protocols at the application layer.	4 M
Ans.	 (Note: Any other protocol shall be considered). HTTP The Hypertext Transfer Protocol (HTTP) is a Application layer protocol used mainly to access data on the World Wide Web. HTTP uses the services of TCP on well-known port 80. FTP FTP (File Transfer Protocol) is standard TCP/IP protocol to transfer files. It uses the services of TCP. It needs two TCP connections. The well-known port 21 is used for the control connection and the well-known port 20 for the data connection. SMTP It stands for Simple Mail Transfer Protocol. It is a part of the TCP/IP standard protocol. Using a process called "store and forward," SMTP moves your email on and across networks. It works closely with something called the Mail Transfer Agent (MTA) to send your communication to the right computer and email inbox. Port number for SMTP is 25. 	Any 4 protocol descripti on 1M each

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Advanced Computer Network

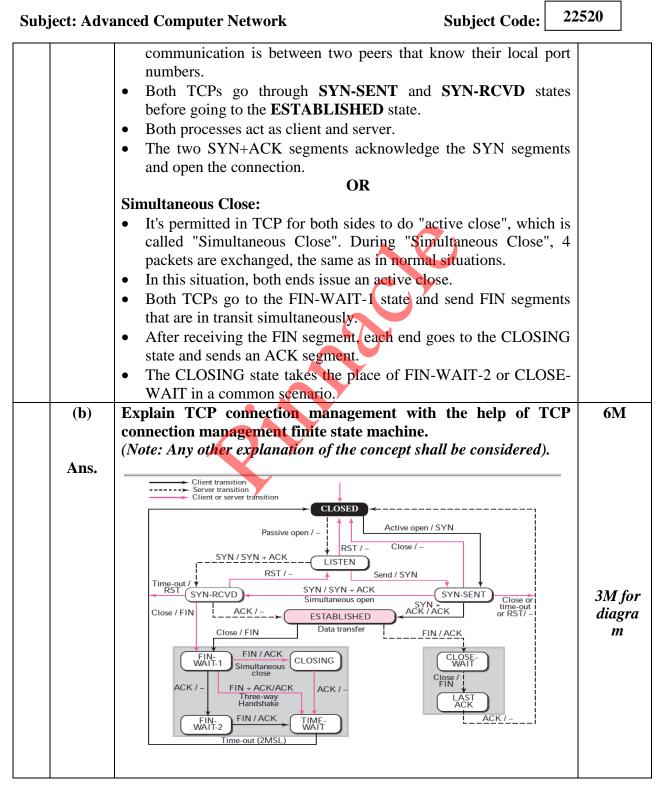
Subject Code:

		TELNET			
		• TELNET is an abbreviation for TErminaLNETwork. It is the			
		standard TCP/IP protocol for virtual terminal service			
		• TELNET enables the establishment of a connection to a remote			
		system in such a way that the local terminal appears to be a			
		terminal at the remote system.			
		• There are two parties involved TELNET Client and TELNET			
		server.			
		DNS			
		• It stands for Domain Name Service. Every time you use a domain			
		name, therefore, a DNS service must translate the name into the			
		corresponding IP address.			
		• For example, the domain name www.abc.com might translate to			
		198.105.232.4.			
		• Port number for DNS is 53.			
		DHCP			
		• It stands for Dynamic Host Configuration Protocol (DHCP). It			
		gives IP addresses to hosts.			
		• There is a lot of information a DHCP server can provide to a host			
		when the host is registering for an IP address with the DHCP			
		server.			
		• Port number for DHCP is 67, 68.			
		POP3			
		• Post Office Protocol, version 3 (POP3) is simple and limited in			
		functionality.			
		 POP works as a Message Access Agent. 			
		 The client POP3 software is installed on the recipient computer; 			
		the server POP3 software is installed on the mail server.			
		 Mail access starts with the client when the user needs to 			
=		download e-mail from the mailbox on the mail server.	10		
5.	(c)	Attempt any TWO of the following:	12 M		
	(a)	Explain how TCP connections are established using the 3 way	6M		
		handshake. What happens when 2 hosts simultaneously try to			
		establish a connection?			
		(Note: Any other explanation of the concept shall be considered).			
	Ans.				

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

22520 **Subject: Advanced Computer Network Subject Code: Connection Establishment** TCP uses a Three way handshaking mechanism to establish a connection between client and server machines. 1M Diagra The three steps in three way handshaking mechanism are as follows. т SYN: The client sends the first segment, a SYN segment, in which only the *3M* SYN flag is set. This segment is for synchronization of sequence Steps numbers. SYN + ACK 2M for The server sends the second segment, a SYN +ACK segment, with 2 simulta flag bits set. neous ACK connect The client sends the third segment. This is just an ACK segment. It ion guarantees the completion of three way handshaking. Server Client A: ACK flac S: SYN flag Active seq: 8000 Passive open open IS seq: 15000 ack: 8001 SYN + ACK **s**eq: 8000 ack: 1500 ACK Time Time If 2 host Simultaneously try to establish connection: **Simultaneous Open:** It's possible for two applications to send a SYN to each other to ٠ start a TCP connection, although the possibility is small, because both sides have to know which port on the other side to send to. This process is called "Simultaneous Open", or "simultaneous active open on both sides". In a simultaneous open, both applications issue active opens. This is a rare situation in which there is no client or server;



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Page 19 / 29

Г

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION,

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject: Adva	nced Computer N	letwork S	Subject Code:	22520	
	 connection establ TCP is specified a TCP State Mach TCP uses Singled by The figure shows combined in one of Ovals/rectang Transition from lines. Each line has The first string 	a three way handshake to close co the FIN bit in the packet header the two FSMs used by the TCF diagram. le represents states. om one state to another is show two strings separated by a slash. g is the input, what TCP receives.	and data transf M onnection P client and serv wn using direct	ver 3M stej	ana of
	 The dotted blaserver normal The solid blaserver hough. Sometimes in 	the output, what TCP sends. ack lines in the figure represent the ly goes through; ck lines show the transitions that a some situations, a server transitions through a dotted Description	a client norma	lly	
	CLOSED	No connection exists]	
	LI STEN	Passive open received; waiting for SYN			
	SYN- SENT	SYN sent; waiting for ACK			
	SYN- RCVD	SYN+ACK sent; waiting for ACK			
	ESTABLI SHED	Connection established; data transfer in pro	ogress		
	FI N- WAI T- 1	First FIN sent; waiting for ACK			
	FI N- WAI T- 2	ACK to arst FIN received; waiting for seco	nd FIN		
	CLOSE- WAI T	First FIN received, ACK sent; waiting for a	pplication to close		
	TI ME- WAI T	Second FIN received, ACK sent; waiting fo	or 2MSL time-out		
	LAST- ACK	Second FIN sent; waiting for ACK			
	CLOSI NG	Both sides decided to close simultaneously]	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

22520 **Subject Code: Subject: Advanced Computer Network** Explain the addressing scheme in IPv4 and IPv6. When IPv6 (c) **6M** protocol is introduced, does the ARP protocol have to be changed? Explain in details. An IPv4 Address: Ans. ✓ An IP address is a 32-bit address. \checkmark The IP addresses are unique. IPv4 2M Address space rule ✓ The address space in a protocol That uses N-bits to define an Address is $= 2^N$ \checkmark The address space of IPv4 is 2^{32} or4,294,967,296. **Address Space Notations:** • Binary Notation : 01110101 10010101 00011101 11101010 **Dotted-decimal notation** 1000000 00001011 00000011 00011111 **Dotted-decimal notation Hexadecimal** Notation 0111 0101 1001 0101 0001 1101 1110 1010 75 95 1**D** EA **Hexadecimal Notation** 10000001 00001011 00001011 11101111 IPv6 2M 129.11.11.239 **Example of Dotted-decimal Notation. IPv6 Address Representation Examples:** 2031:0000:130F:0000:0000:09C0:876A:130B ARP 2M 2031:0:130f::9c0:876a:130b FF01:0:0:0:0:0:0:1>>> FF01::1 0:0:0:0:0:0:0:1>>>::1 0:0:0:0:0:0:0:0:0 >>> ::

Page 21 / 29

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Advanced Computer Network

Subject Code:

22520

		 Notations in 128 bit Dotted decimal 123.145.20.34 hexadecimal notation. 23BA:1234:00B1:0000:BF30:3456:000A:FFFF Mixed representation 23BA:1234:123:56:BF30:3456:000A:FFFF CIDR notation. FDC1:AB23:0:FFFF/27 3.4 * 10³⁸ possible addressable nodes 5 * 10²⁸ addresses per person 	
6.	(a) Ans.	 Attempt any TWO of the following: Explain the 3 intra domain routing protocols. (Note: Explanation of any other protocols shall be considered). i) Distance Vector Routing: Require only local state (less overhead smaller footprint) Harder to debug Can suffer from loops Distance vector Routing Protocol: 	12 6M
		 Distance vector Koulding Protocol: Here Distance vector: Current best known cost to reach a destination Idea: exchange vectors among neighbors to learn about lowest cost paths. Distance vector protocols advertise their routing table to all directly connected neighbors at regular frequent intervals using a lot of bandwidth and are slow to converge. When a route becomes unavailable, all router tables must be updated with that new information. The problem is with each router having to advertise that new information to its neighbors, it takes a long time for all routers to have a current accurate view of the network. Distance vector protocols use fixed length subnet masks which aren't scalable. periodically (on the order of several seconds to minutes) whenever table changes (called triggered update) Each update is a list of pairs: (Destination, Cost) Update local table if receive a "better" route smaller cost from newly connected/available neighbor 	Any 3 protoc ols 2M each

Page 22 / 29

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject: Adva	anced Computer Network Subject	Code: 2	2520]
	• Refresh existing routes; delete if they time out i.e. RIP-Routing Information Protocol			
	 ii) Link State Routing: Have a global view of the network Simpler to debug Require global state Link State Strategy each router shares the information/knowled neighborhood with every other router in the interr Send to all nodes (not just neighbors) Send only information about directly connecte entire routing table) Link State Packet (LSP) 	network.		
	 ID of the node that created the LSP Cost of link to each directly connected neighbor Sequence number (SEQNO) Time-to-live (TTL) for this packet i.e. OSPF-Open Shortest Path First iii) RIPv2: Runs over UDP port 520 Limits networks to 15 hops (16 = 1) Depends on count to infinity for loops Supports split horizon, poison reverse RFC 1812 specifies what options routers should or n 	nust have.		
	 iv) MOSPF (Multicast Open Shortest Path First): This protocol is an extension of the OSPF protoc multicast link state routing to create source-based t The protocol requires a new link state update associate the unicast address of a host with the gro or addresses the host is sponsoring. This packet i group membership LSA. In this way, we can include tree only the hosts (using their unicast addresses) to a particular group. Thus a tree that contains all the hosts belonging but we use the unicast address of the host in the cal For efficiency, the router calculates the shortest p 	rees. e packet to oup address is called the clude in the that belong to a group, lculation.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION,

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject: Adva	anced Computer Network	Subject Code:	22520
	 demand (when it receives the first In addition, the tree can be saved use by the same source/group pair. MOSPF is a data-driven protoco router sees a datagram with a give the router constructs the Dijkstra site 	in cache memory for futu I; the first time an MOSI n source and group addres	PF
	 v) Multicast Distance Vector Routing (I The Distance Vector Multicast Routing implementation of multicast distance vector routing. It protocol, based on RIP. Unicast distance vector routing is support multicast routing is compli- Multicast routing does not allow table to its neighbors. The idea is to create a table from s from the unicast distance vector tai Multicast distance vector routing the router never actually makes a r When a router receives a multic packet as though it is consulting a After its use (after a packet i destroyed. To accomplish this, the multicas uses a process based on four decisi vi) PIM-DM (Protocol Independent Mu PIM-DM is used when there is a p 	g Protocol (DVMRP) is is a source-based routin very simple; extending it icated. a router to send its routin cratch using the information bles. uses source-based trees, b outing table. crast packet, it forwards the routing table. s forwarded) the table t distance vector algorithe ion-making strategies.	ng to ng on out he is im
	 involved in multicasting (dense model) In this environment, the use of a packet is justified because almost the process. PIM-DM is a source-based tree room and pruning/grafting strategies for Its operation is like DVMRP; he does not depend on a specific unic. It assumes that the autonomous protocol and each router has a table 	protocol that broadcasts t all routers are involved uting protocol that uses RI multicasting. owever, unlike DVMRP, asting protocol. system is using a unica	in PF it ast

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Adv	vanced Computer Network Subject Code: 22	2520
	 interface that has an optimal path to a destination. This unicast protocol can be a distance vector protocol (RIP) or link state protocol (OSPF). 	
(b)	Describe modern computer use dynamic routing. Explain with example how distance vector routing is used to route the packet & why count-to-infinity problem arises and how does it get solved?	6M
Ans.	 (Note: Any other description of the concept shall be considered.) Dynamic routing uses a dynamic routing protocol to automatically select the best route to put into the routing table. So instead of manually entering static routes in the routing table, dynamic routing automatically receives routing updates, and dynamically decides which routes are best to go into the routing table. This intelligent and hands-off approach that makes dynamic routing so useful in modern era. Dynamic routing protocols vary in many ways and this is reflected in the various administrative distances assigned to routes learned from dynamic routing. These variations take into account differences in reliability, speed of convergence, and other similar factors. Distance vector routing is one of the dynamic routing algorithm. 	2M for Dyna mic routin g conce pt
	 It is suitable for packet switched network. In distance vector routing, each router maintains a routing table. It contains one entry for each router in the subnet. This entry has two parts: a. The first part shows the preferred outgoing line to be used to reach the destination. b. Second part gives an estimate of the time or distance to the destination. In distance vector routing, a node tells its neighbor about its distance 	2M fo Dista ce vecto routin g and
	 to every other node in the network. Count to infinity problem: One of the important issue in Distance Vector Routing is Count to Infinity Problem. Count to infinity is just another name for a routing loop. In distance vector routing, routing loops usually occur when an 	1M fo Coun to infinit probl m

Page 25 / 29

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

22520 Subject Code: **Subject: Advanced Computer Network** interface goes down. 1M for 4. It can also occur when two **routers** send updates to each other at solutio the same time. n OR For a routing protocol to work properly, if a link is broken (cost becomes infinity), every other router should be aware of it immediately, but in distance vector routing, this takes some time. The problem is referred to as count to infinity. It takes several updates before the cost for a broken link is recorded as infinity by all routers. Count to infinity problem can be solved by following methods: 1. Defining Infinity 2. Split Horizon 3. Split Horizon an Poison Reverse **Example:** Link Between A & B is Broken С D С в D 2, B 3, C A O, -1, A в 1, B 0, -2, C 3, D С 2, B 1, C 1, C 0, -D 3, B 2, C 1, D 0, -Imagine a network with a graph as shown above in figure 4.8. As you see in this graph, there is only one link between A and • the other parts of the network. Now imagine that the link between A and B is cut. At this time, B corrects its table. • After a specific amount of time, routers exchange their tables, and so B receives C's routing table.

- Since C doesn't know what has happened to the link between A and B, it says that it has a link to A with the weight of 2 (1 for C to B, and 1 for B to A -- it doesn't know B has no link to A).
- B receives this table and thinks there is a separate link between

Г

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION,

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Advand	ced Computer Network		Subject	Code:	22520	
	 When C receives B's routing ta the weight of its link to A from changes the weight of the link t B to A, as B said). This process loops until all node to A is infinity. This situation is shown in the ta In this way, Distance Vector convergence rate. 	able, it sees to 3, so C o A to 4 (1 to 5, so C o A to 4 (1 to ble below tor Algorit	that B has updates its for C to B, a hat the weight hat the weight have s to send inf	change table ar and 3 f ht of lin a slo	ed nd or nk ww	
	Sum of Weight to A after link cut Sum of Weight to A after 18 updating	B ∞, A 3, C	C D 2, B 3, 2, B 3,	С		
	Sum of Weight to A after 2 nd updating Sum of Weight to A after 3 nd updating	3, C 5, C	4, B 3, 4, B 5,			
	Sum of Weight to A after 4 th updating Sum of Weight to A after 5 th updating	5, C 7, C	6, B 5, 6, B 7,			
	Sum of Weight to A after n th updating		···· ··· ···			
	Describe E-mail security over nor Note: Any other explanation onsidered.)	on email	security si			1
Ans. •	Email security describes diff sensitive information in email secure against unauthorized acc	communic	ation and a	iccount	0	

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

Г

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION,

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject: Advance	d Computer Network	Subject Code:	22520	
	Email is often used to spread malware, s attacks. Attackers use deceptive messages to to part with sensitive information, open attack hyperlinks that install malware on the victim Email encryption involves encrypting, of content of email messages to protect per information from being read by anyone of recipients. Email encryption often includes a Email allows attackers to use it as a way to attempt to profit. Whether through spam ca and phishing attacks, sophisticated targeted email compromise (BEC), attackers try to tal lack of security of email to carry out their ac Since most organizations rely on email attackers exploit email in an attempt information. Because email is an open format, it can be who can intercept it. It can be easily read and email by intercepting it. Email Security Policies can be established contents of emails flowing through their important to understand what is in the entir act appropriately. After these baseline po- effect, an organization can enact various s those emails. These email security policies can be as simple executable content from emails to more in- sending suspicious content to a sandboxin analysis. If security incidents are detected by th organization needs to have actionable inter scope of the attack. Enforce email encryption policies to preve information from falling into the wrong hand. An email gateway scans and processes outgoing email and makes sure that threats Because attacks are increasingly sophis security measures, such as blocking attachments, are no longer effective.	to entice recipients chments or click or i's device. or disguising, the otentially sensitive ther than intended outhentication. o cause problems in ampaigns, malward attacks, or business ke advantage of the tions. I to do business to steal sensitive viewed by anyone d the contents of an ed by viewing the email servers. It's re email in order to licies are put into ecurity policies or ple as removing al depth actions, like g tool for detailed hese policies, the elligence about the ent sensitive email ds. all incoming and are not allowed in isticated, standard	Any Poin Any Poin Any Poin Any Any Any Any Any Any Any Any Any An	its

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Advanced Computer Network

Subject Code:

 Deploy a secure email gateway that uses a multi-layered approach. It's also important to deploy an automated email encryption solution as a best practice. This solution should be able to analyze all outbound email traffic to determine whether the material is sensitive. If the content is sensitive, it needs to be encrypted before it is emailed to the intended recipient. This will prevent attackers from viewing emails, even if they were to intercept them. The Pretty Good Privacy (PGP) provides e-mail with privacy, integrity, and authentication can be used over non secure channel such as internet. It is used for signing, encrypting and decrypting texts, e-mails, files, directories and whole disk partitions and to increase the security of e-mail communications. Another security service designed for electronic mail is Secure/Multipurpose Internet Mail Extension (S/MIME). The protocol is an enhancement of the Multipurpose Internet Mail 		
 solution as a best practice. This solution should be able to analyze all outbound email traffic to determine whether the material is sensitive. If the content is sensitive, it needs to be encrypted before it is emailed to the intended recipient. This will prevent attackers from viewing emails, even if they were to intercept them. The Pretty Good Privacy (PGP) provides e-mail with privacy, integrity, and authentication can be used over non secure channel such as internet. It is used for signing, encrypting and decrypting texts, e-mails, files, directories and whole disk partitions and to increase the security of e-mail communications. Another security service designed for electronic mail is Secure/Multipurpose Internet Mail Extension (S/MIME). The 	approach.	
 analyze all outbound email traffic to determine whether the material is sensitive. If the content is sensitive, it needs to be encrypted before it is emailed to the intended recipient. This will prevent attackers from viewing emails, even if they were to intercept them. The Pretty Good Privacy (PGP) provides e-mail with privacy, integrity, and authentication can be used over non secure channel such as internet. It is used for signing, encrypting and decrypting texts, e-mails, files, directories and whole disk partitions and to increase the security of e-mail communications. Another security service designed for electronic mail is Secure/Multipurpose Internet Mail Extension (S/MIME). The 	1 1 2 21	
 material is sensitive. If the content is sensitive, it needs to be encrypted before it is emailed to the intended recipient. This will prevent attackers from viewing emails, even if they were to intercept them. The Pretty Good Privacy (PGP) provides e-mail with privacy, integrity, and authentication can be used over non secure channel such as internet. It is used for signing, encrypting and decrypting texts, e-mails, files, directories and whole disk partitions and to increase the security of e-mail communications. Another security service designed for electronic mail is Secure/Multipurpose Internet Mail Extension (S/MIME). The 	-	
 emailed to the intended recipient. This will prevent attackers from viewing emails, even if they were to intercept them. The Pretty Good Privacy (PGP) provides e-mail with privacy, integrity, and authentication can be used over non secure channel such as internet. It is used for signing, encrypting and decrypting texts, e-mails, files, directories and whole disk partitions and to increase the security of e-mail communications. Another security service designed for electronic mail is Secure/Multipurpose Internet Mail Extension (S/MIME). The 		
 from viewing emails, even if they were to intercept them. The Pretty Good Privacy (PGP) provides e-mail with privacy, integrity, and authentication can be used over non secure channel such as internet. It is used for signing, encrypting and decrypting texts, e-mails, files, directories and whole disk partitions and to increase the security of e-mail communications. Another security service designed for electronic mail is Secure/Multipurpose Internet Mail Extension (S/MIME). The 	• If the content is sensitive, it needs to be encrypted before it is	
 The Pretty Good Privacy (PGP) provides e-mail with privacy, integrity, and authentication can be used over non secure channel such as internet. It is used for signing, encrypting and decrypting texts, e-mails, files, directories and whole disk partitions and to increase the security of e-mail communications. Another security service designed for electronic mail is Secure/Multipurpose Internet Mail Extension (S/MIME). The 	1 1	
 integrity, and authentication can be used over non secure channel such as internet. It is used for signing, encrypting and decrypting texts, e-mails, files, directories and whole disk partitions and to increase the security of e-mail communications. Another security service designed for electronic mail is Secure/Multipurpose Internet Mail Extension (S/MIME). The 	from viewing emails, even if they were to intercept them.	
 such as internet. It is used for signing, encrypting and decrypting texts, e-mails, files, directories and whole disk partitions and to increase the security of e-mail communications. Another security service designed for electronic mail is Secure/Multipurpose Internet Mail Extension (S/MIME). The 		
 texts, e-mails, files, directories and whole disk partitions and to increase the security of e-mail communications. Another security service designed for electronic mail is Secure/Multipurpose Internet Mail Extension (S/MIME). The 		
 increase the security of e-mail communications. Another security service designed for electronic mail is Secure/Multipurpose Internet Mail Extension (S/MIME). The 		
• Another security service designed for electronic mail is Secure/Multipurpose Internet Mail Extension (S/MIME). The		
Secure/Multipurpose Internet Mail Extension (S/MIME). The		
protocol is an enhancement of the Multipurpose Internet Mail		
Extension (MIME) protocol. This allows user to digitally sign the		
email to enhance privacy and data security.	email to enhance privacy and data security.	

